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1. Introduction

Sonic fatigue has been considered as one of the major design considerations for the Joint
Strike Fighter (JSF). In addition, the surface panels of many high-speed flight vehicles
(e.g., the X-33, RLV, X-38, and X-43, etc.) presently under development will be exposed
to high levels of acoustic pressure and elevated temperatures. This brings an urgent need
for the sonic fatigue analysis and design methods for aircraft and spacecraft structural
panels.

For safety and reliability, the design of modern structures such as skyscraper buildings,
constructions housing nuclear reactors, and naval and aerospace structures must take into
consideration various intense random excitations. These excitations include seismic
motions of earthquakes, pressure waves of explosions or blasts, jet noise, and
atmospheric turbulence. The three important aerospace problems of random vibration [1]
are the following: buffeting of aircraft by atmospheric turbulence, sonic fatigue of aircraft
and spacecraft panels due to jet noise impingement or boundary layer pressure

fluctuations, and the reliability of payloads in rocket-propelled vehicles.
1.1 Nonlinear Random Vibration Analysis Techniques

Stochastically excited linear systems have been studied in great detail and numerous
analytical techniques exist for both stationary and nonstationary problems.
Unfortunately, the majority of structural responses are nonlinear and not many techniques
exist for the analysis. Crandall and Zhu [1], To [2], Roberts [3], and Spanos and Lutes
[4] have presented excellent and comprehensive reviews on techniques for nonlinear

random vibrations. The various approaches are given briefly in the following paragraphs.
1.1.1 Fokker-Planck-Kolmogorov (FPK) Equations Approaches

The FPK equations approaches give an exact solution for a restricted class of simple

problems. The most general extension of FPK equations approaches to nonlinear second




order equations was due to Caughey [5]. Exact steady-state solutions of rather wide class
of Multi-Degrees-of-Freedom (MDOF) nonlinear systems to white noise are available
[6,7]. In general, the transitional Probability Density Function (PDF) cannot be found
with the FPK equation approach. Without this transitional probability, it is generally
impossible to obtain the correlation function and Power Spectral Density (PSD) of the
response. The difficulty in dealing exactly with solutions of stochastically excited
nonlinear systems has led to an intensified effort to develop approximate methods, to

tackle a broader class of problems than presently possible with the exact analysis.
1.1.2 Perturbation Approaches

In this approximate method, the stochastically exited nonlinear system is treated in the
same way as a deterministically excited system. The solution is represented as an
expansion of the powers of a small parameter which specifies the size of the nonlinearity.
The perturbation approach was applied to a continuous nonlinear system by Lyon [8] and
to discrete nonlinear systems by Crandall [9]. The perturbation approximation; however,

will not give accurate result for systems of large nonlinearity [10] as shown in Figure 1.
1.1.3 Equivalent Linearization (EL) Approaches

The EL approaches technique is based on the concept of replacing the nonlinear
system by an equivalent linear system such that the difference between the two systems is
minimized. Basically, the method is the statistical extension of well-known Krylov-
Bogoliubov equivalent linearization method for deterministic vibration problems. The
extension of this approximate method to problems of random excitations was made
independently by Booton [11] and Caughey [12]. Atalik and Utku [13] have presented a
direct and generalized procedure of the equivalent linearization approach for the MDOF
nonlinear systems that may be nonlinear in inertial, velocity, and restoring forces. The
coefficients of the equivalent linear system can be obtained by direct application of
partial differentiation and expectation operators to the functionals involving nonlinear

terms. For mathematical derivations of the equivalent linearization technique and its



applications to the variety of nonlinear dynamic systems, the readers are referred to the

published book by Roberts and Spanos [14].

1.1.4 Numerical Simulation Approaches

Simulation or the Monte Carlo method estimates the response statistics of randomly
excited nonlinear structural systems [15-17]. In the past, both analog and digital
computational systems have been used for Monte Carlo simulations. Only digital
systems are used presently. The approach mainly consists of generating a large number
of sample excitations, calculating the corresponding response samples, and processing the
desired response statistics. Obviously, this approach can be used for estimating the
response statistics of both stationary and nonstationary excitations. The major drawback

of this approach is the computation time and cost.

The various analysis techniques discussed for nonlinear random vibration systems in
Section 1.1 were not dealt with thermal environment. A brief review of sonic fatigue
analysis and design methods for aircraft and spacecraft structural panels in a combined

thermal acoustic environment is presented.

1.2 Nonlinear Random Response of Panels in an Elevated Thermal

Environment

Sonic fatigue design guides have been developed for metallic structures by Rudder and
Plumblee [18] and for graphite-epoxy composite structures by Holehouse [19]. The
design guides were based on the semi-empirical test data or the simplified single-mode
Miles’ approach.

Vaicaitis and his coworkers have used the Galerkin’s method (to Partial Differential
Equations (PDE) and modal approach) in conjunction with the time domain Monte Carlo
numerical simulation [15-17] for the prediction of nonlinear response of isotropic [20,21]
and composite [22,23] panels subjected to acoustic and thermal loads. Lee [24-26] has

used the PDE/Galerkin method in conjunction with the equivalent linearization [14]




technique and investigated the thermal effects on the dynamics of vibrating isotropic
plates and the improvement of variance and cumulants using the abridged Edgeworth
series [27]. The use of the PDE/Galerkin method, however, limits its applicability to
simple panel planform of rectangular shape and simple boundary conditions.

Extension of the Finite Element (FE) method to nonlinear response of isotropic beam
[28] and plate [29] structures under combined acoustic and thermal loads was first
reported by Locke and Mei using the EL technique with an iterative scheme. The
application of the FE/EL procedure was further extended to composite panels by Mei and
Chen [30]. In the FE/EL solution procedure, the thermal postbuckling or thermal finite
deflection structural problem is solved first. The thermal deflection and thermal stresses
are treated as known preconditions for the subsequent random response analysis. The
random response thus considers only one of the two coexisting thermal postbuckling
positions [31]. The FE/EL method, therefore, does not give accurate predictions for
snap-through (or oil-canning) and large-amplitude nonlinear random motions.
Experiments by Ng and Clevenson [32], Istenes et al. [33], and Murphy et al. [34, 35]
have shown that the dynamic response of acoustic excited thermally buckled plates may
exhibit the following two types of motion: (i) small amplitude vibrations about one of the
coexisting static equilibriums, and (ii) large amplitude nonlinear snap-through
oscillations between and over the two postbuckling positions. Reviews of large
deflection analysis in sonic fatigue design were given by Mei and Wolfe [36], Benaroya
and Rebak [37], Vaicaitis [20, 21], Clarkson [38], and Wolfe et al. [39].

This report presents an efficient finite element method for the prediction of nonlinear
random response of composite panels at elevated temperatures. The system equations of
motion are first derived in the structural node degree of freedom (DOF), then they are
reduced to a set of coupled nonlinear modal equations. Numerical integration is used to
obtain the panel response. The following three types of motions can be predicted: (i)
linear random vibration about one of the thermally buckled position, (ii) snap-through
between the two buckled positions, and (iii) nonlinear random vibration over the two
thermally buckled positions. Examples are given for an isotropic plate and a composite

plate.
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2. Finite Element Formulation

The governing nonlinear equations of motion are derived for an arbitrarily laminated
composite plate subjected to a set of simultaneously applied thermal and acoustic loads.
The thermal load is taken to be an arbitrary distribution and steady-state, i.e.,
AT=AT(x,y,z). The acoustic excitation is assumed to be a band-limited Gaussian random

noise and uniformly distributed over the structural surface.
2.1 Equations of Motion in Structural Node DOF

The element displacements are expressed in terms of the node DOF as

u(x’ Y t) = I..Hu J{wm}
v(x,y,t) = LH,,_J{W,,,} (l)
w(x,y,0) = H, [fw,}

where u, v, and w are the in-plane and transverse displacements of the middle surface; the
vectors {w,,} and {w;} denote the in-plane and bending node DOF; and I_H ,,_], l_H ,,J, and
|_H W_J denote in-plane and transverse displacement functions, respectively.

The finite element formulation is based on the von Karman large deflection and the

laminated plate theories. The strain-displacement relations are given

gx
fe)=1 ¢, t={"}+ zloch= oo J+ e} 2lic) @)
Ve
and
U,
Ed=1 v, t=[B.Iw.} 3)
u’y + va



1 v 1| 2w 1
S L e Y @
2w’xw’y w, W, ’
W
h=1-w, t=[8Jw} (5)
2w

where{£”} and {k} denote the in-plane strain and curvature strain vectors; and [6] is the
slope matrix, respectively. The matrices [B,], [Bs), and [B;] are the strain interpolation
matrices corresponding to in-plane, large deflection, and bending strain components,
respectively. The subscripts m, 6, and b denote that the strain components are due to

membrane, large deflection, and bending, respectively; and the comma denotes the

derivative.

The linear constitutive relations for the k™ orthotropic lamina in the principal material

coordinates are

o, O, O, O & Q,
oy, =|0n Opn 0 & p—1Q, ¢ AT (6)
T12 ), 0 0 O « 12 0 x

where [Q] is the reduced stiffness matrix of the composite lamina, and {a}; is the

coefficient of thermal expansion. The terms in [Q] can be evaluated as follows:

E
0 =r—t—
—ViVn
v, E v, E
Q — 1242 - 2171 (7)
R ECR N BV
E
Q22 — 1__._2_
—VipVy
Q66 = G:z




Consider the composite lamina having an arbitrary orientation angle ¢, the stress and

strain transformation relations from the principal directions 1, 2 to x, y body directions

are:

oy (o & £,

o=l @o, g, b=[L.@#)) ¢, ®)

Ti2 Ty Vi Vs

where
62 S2 2s¢ 02 sz sc

[T, @)= s* ¢ =25 |, @)= s ¢ -sc )
-sc sc c¢’-5° -2s¢ 2s¢ ¢’ -5’

with c=cos(¢), s=sin(¢).

Thus, the stress-strain relations for a general k™ lamina with an orientation angle ¢ and a

temperature change become:

ax Q]l Q]Z —Q—16 gx ax

{O-}k =30, = QZI ~Q-‘zz §26 €, - AT a, (10)
T )y Qﬂ Qﬁ?_ §66 A o Ty ),

or

{o} =[0], (e}-arla}) 11)

where [Q ]k the transformed reduced stiffness matrix is given by,

0], = [, ) [ollz, )] (12)

The resultant forces and moments per unit length are



h/2

(V. )= floh a2 (13)
~h/2
and the constitutive equations for a laminate can be written as
N 4 Bilg° N
- el (14)
M B Dlix M,,

where [4], [B], and [D] are the laminate extensional, extension-bending, and bending
stiffness matrices, respectively. The vectors {N,r} and {Myr} are the in-plane force and

moment due to thermal expansion

hil

(), )= lOhaTia), 0, 2)e:

-h/2

(15)

Using the principle of virtual work, the element nonlinear equations of motion are

derived with the internal and external virtual work as

5, = [llss" (0} + o] s
Wy = [lowlp e, y,0) ~ phow, )= b, )~ (kv A (16)

A

and the element equations of motion can be expressed as
m, 0 |]w, + ky ky| lkwr O))]w
0 mm wm k;’ k”l 0 0 W"I
k
4| | o +hiyp ki + ky O} ws _JPur | [P )
k 1mb 0 0 0 Wi Puar 0

(17)




The element matrices and load vectors are listed in Appendix A. The subscripts B, NAT,

Nm and NB denote that the corresponding stiffness matrix is due to the laminate
extension-bending [B], in-plane force components {N,;}, {N,,,}= [A]{c)}, and
{N}=[B}{k}, respectively.

Assembling all the elements and taking into account the kinematic boundary conditions,

the system equations of motion in structural node DOF can be expressed as
M, 0 |(w, . K, K, Kur ONW,
0 M”’ pi);}l K;‘ KIII 0 O W'IH
+ Kle + KlNB Klbm + KZb O Wb — ‘PbAT + Pb (t)
Klmb 0 O O I/Vm PrnAT O

(182)

or

()7 }+ (K] - [K o ]+ [K )+ [E D} = (P 1+ (PO} (18b)

where [M], [K], and {P} denote the system mass, linear stiffness matrices, and load
vector, respectively; and [K;] and [K;] denote the first-order and second-order nonlinear

stiffness matrices which depend linearly and quadratically on displacement {W}.

For a given temperature rise AT, Equation (18) can be solved by numerical integration in
the structural node DOF with simulated random loads. This approach has been carried
out for random response analysis with simulated random loads by Green and Killey [40]
and Robinson [41]. It turned out to be computationally costly because of the following:
(1) the large number of DOF of the system, (ii) the nonlinear stiffness matrices [K,] and
[K>] have to be assembled and updated from the element nonlinear stiffness matrices at
each time step, and (iii) the time step of integration has to be extremely small.
Consequently, Equation (18) is transformed into a set of truncated modal coordinates

with rather small DOF.

10



2.2 Equations of Motion in Modal Coordinates
2.2.1 Symmetric Laminates

For symmetrically laminated composite and isotropic panels, the laminate coupling

stiffness [B] is null and the two submatrices in Equation (18) are

[KB]:[KWB]:O (19)

By neglecting the membrane inertia term, the membrane displacement vector can be

expressed in terms of the bending displacement vector as

W, 3= (K, T (Pasr )~ (K J7,) | 0)

Then Equation (18) can be written in terms of the bending displacement as

[M b ]{Wb }"' ([Kb ] - [KNAT D{Wb }+ [Klbm ][Km ]—1 {PmAT }
- 21)
+ [Kle ]{Wb }+ ([KZb ] - [Klbm ][Km ]_1 [Klmb ]){Wb} = {PbAT }+ {Pb (t)}
In the above system, the nonlinear stiffness matrices can be expressed in terms of modal

coordinates. This is accomplished by expressing the panel response as a linear

combination of some base functions (modal transformation) as

Wi=2a0l)" =bld 22)
r=1

where {¢b}(') corresponds to the normal modes of the linear vibration problem

o} [Mb ]{¢b }(r) = [Kb] {¢b }(r) (23)

11




The nonlinear stiffness matrices [K;sm] and [K2s] are both in function of {#}. They can
be expressed as the sum of products of modal coordinates and nonlinear modal stiffnesses

matrices as

[Klbm] = [Klmb ]T = i (Ir (t)[Klbm (¢b )](’)

n n

[bi]= qur(f)qs(t)[bi%]m) (24)

r=t s=1

where the super indexes of those non-linear modal stiffness matrices denote that they are
assembled from the corresponding element non-linear stiffness matrices (see Appendix
A). Those non-linear stiffness matrices are evaluated with the corresponding element

components {wb}(r) obtained from the known system mode {¢/,}(r).

The nonlinear stiffness matrix [K;nm] is linearly dependent on the displacement

{Wn}. Recalling the membrane displacement vector of Equation (20)

= [K m ]_l ({PmAT } - [K 1mb ]{Wb })
[

=&Tﬁmw~ii%m%mmWW%Fq (25)
e -3 00,0,

It is observed that [K;nw] is the sum of two matrices, the first [Kym]ar is evaluated with

(Wodar (S[Kn]{Pmar}) and the second [Kow] is evaluated with {g,} (=[Kn]"

[Kims) {45} ®) as

n n

(K] = K s = D 24,08, (D Ky 8,17 - (26)

r=1 s=1

12



Introducing a structural modal damping 2¢ @,M [I], where the modal damping, &, can '
be determined experimentally or pre-selected from a similar structure. The equations of

motion Equation (21) are reduced to a set of coupled modal equations as

7] )+ 22,002,111 fa}+ (B, )+[R,,) o= {7 @7)

where the diagonal modal mass is

[M2]=[oT [0, ] [#]= 32,111 (28)

the linear and cubic terms are

[, Y} = 8 (K, 1= [Kosr I+ [ Lir) 0] 03 ¢]’qu[Ku,m 1o ar (29)

K Ja =T 3> 0.4, (K 1 ~[Kpa]™ - K IO [K, P [K ) Bl i} GO)

r=l s=1

and the modal thermal and random load vector is

P=[) (Pur }+ (R O)) 31)

The nonlinear random response for a given symmetric composite or isotropic panel at
certain temperature can thus be determined from Equation (27) by numerical integration
scheme. The advantages of using the modal equations are the following: (i) the number
of modal equations is small (DOF of {g}<<DOF of {Wy}), (ii) there is no need to
assemble and update the nonlinear cubic term at each time step since all the nonlinear
modal stiffness matrices are constant matrices, and (iii) the time step of integration could

be larger.

13




2.2.2 Unsymmetric Laminates

For unsymmetrically laminated composite panels, the laminate coupling stiffness [B]#0
which leads to the two submatrices [Kp] and [K;yg] both are not zero. The linear

vibration from Equation (18) becomes

My 0087 (K K] [a)”
" | % (32)
’ 0 M m ¢m} KI]I ij| ¢"’

The bending {¢b}(r) and in-plane {qﬁm}(’) modes are thus coupled.

Follow the procedures for the symmetric laminates, the panel response is expressed as

wi= {Z } - Z“’){Z }m = [#}q} (33)

The nonlinear stiffness matrices [K;] and [K3] can be expressed as the sum of products of

modal coordinates and nonlinear modal stiffness matrices as

[K]=Yq.0)

[KW"' (¢m )](r) + [KxNB( b )](r) [Klbm (¢b )](r):l

[Kl mb (¢b )]( & 0 (34)
- q,0lK)"
and
[K.]= 35 a0, 00 (81 G9)

where the super indexes of those nonlinear modal stiffness matrices denote that they are
assembled from the corresponding element nonlinear stiffness matrices. The element

nonlinear stiffness matrices are evaluated with the corresponding element components

14



(wp}® and {w,}® obtained from the known system modes {37 and {¢n}",

respectively.

With the introducing a structural modal damping 2&.@,M,[I], equations of motion

Equation (18) reduce to a set of coupled modal equations as

7]+ 26,0,7,001 o)+ (K, )+ K, ]+ [K,, ] o} = P} | (36)

where the diagonal modal mass and linear stiffness matrices are

(321K, ) =[sT (MK - Ky Do) 37)

the quadratic and cubic terms are

&, g} =0T Y. [x. 17 [)a) (38)

r=1

&, o)=Y 0,05, 1 bla) (39)

r=1 s=1

and the modal thermal and random load vector is

{P}=[s] (P} +{P®))) (40)

The nonlinear random response for a given unsymmetric composite panel at certain
temperature can then be determined from Equation (36), using numerical integration.
The advantages are as follows: (i) DOF of {g} is small, (ii) no need to assemble and
update the nonlinear quadratic and cubic terms, and (iii) the time step of integration could

be larger.
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2.3 Stress and Strain Calculations

After the modal displacement {¢g} for a given combination of acoustic load and elevated
temperature case is determined, {Wp} and {Wn} can be evaluated with Equation (22) and
Equation (25) for the symmetric and Equation (33) for the unsymmetric panels,
respectively. The element in-plane strain {50} and curvature {x} can be calculated using
Equation (3) to Equation (5), respectively. The element strains are then obtained from
Equation (2), and stresses for the k™ layer are obtained using Equation (10). Stress and
strain in the material principal directions are then obtained using Equation (8). For the
displacement based finite element method, the stress/strain calculation is not as accurate
as displacement calculation. According to Barlow [42], and Cook et al. [43], the stresses
at Barlow points are calculated and the result is extrapolated to the nodal points or other
desired points. The global stresses and strains are averaged from different Jocal nodal

values, which share the same global node number.
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3. Results and Discussions

3.1 Uniform Distribution Random Pressure

Consider a random pressure p(x,y,t) acting on the surface of a high-speed flight vehicle.
The pressure acting normal to the panel surface varies randomly in time and space along
the surface coordinates x and y. The pressure p(X,y,t) is characterized by a cross-spectral
density function Sy(€, N, ©), where &= x; —X; and m=y; — y; are the spatial separations
and o is the frequency in rad/sec. The simplest form of the cross-spectral density is the
truncated Gaussian white noise pressure uniformly distributed with spatial coordinates x

and y

s Emr)=1% ¥ 0=/=], 1)
0 if £<0 or f>F,

where Sy is constant and f, is the upper cut-off frequency in Hz. The expression for Sp

can be written as [18,22]
So :pg ].OSPL”O (42)

where py is the reference pressure, py = 2.90075 10® psi (20pPa), and sound pressure
level (SPL) is expressed in decibels (dB). A typical simulated random load at 90 dB SPL
is shown in Figure 2. The band-limited white noise is generated by a Fortran code given
in Appendix B that simulates a random pressure using complex numbers with
independent random phase angles uniformly distributed between 0 and 2n. The PSD
value of the random process is obtained by taking the ensemble average of the Fourier
transform of the random load. The PSD value is then compared to the exact one given by
Equation (42). The analyses presented are obtained for a cut-off frequency of 1024 Hz

for the isotropic and the composite plates. The selected frequency bandwidth is Aw=0
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rad/sec (1 cycle/sec) with the random load prescribed in decibels. For instance, for a
uniformly Gaussian random load of 100 dB over a frequency range of 0-1024 Hz

corresponds to an overall sound pressure level (OASPL) of 130 dB.
3.2 Finite Element and Validation

The nonlinear element equations developed in Equation (17) are general in the sense that
they are applicable for beam [28], rectangular [29, 31, and 41}, and triangular [30, 44,
and 45] plate finite elements. The finite element employed in the present study is the c'-
conforming rectangular plate element. The linear stiffness and mass matrices are
developed by Bogner-Fox-Schmit (BFS) [46]. The thermal geometrical matrix, thermal
load vectors, and nonlinear stiffness matrices are generated using the expressions given in
Appendix A. The BFS element has a total of 24 DOF, 16 bending DOF {w;}, and 8 in-
plane DOF {w,} as shown in Figure 3.

Accurate nonlinear analytical multimode results and test data for panels under
acoustic and thermal loads are not available in the literature. Validation of the present
nonlinear modal formulation will thus consists of the following two parts: (i) nonlinear

_ free vibrations to assess the accuracy of the left side of Equation (27) with zero damping,

and (ii) linear random vibrations to validate the simulated random load {75 } at the right

side of Equation (27) with AT=0. The accuracy of the nonlinear stiffness matrices in
modal coordinates has been verified by Shi et al. [47] for nonlinear free vibration of
fundamental and higher modes of plates and beams. The validation of simulated random
loads is by comparison of the linear displacements with linear analytical results shown in
Table 1. Linear analytical random response is given in Appendix C. The FPK method
[48] is an exact solution [49] to the single DOF forced Duffing equation. The present
time domain numerical simulation results are also shown in Table 1. The natural

frequencies of the lowest seven modes in increasing order are given in Table 2.
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Table 1. Comparison of RMS Way/h for a Simply-Supported
15x12x0.040 in. Isotropic Plate

SPL | Linear Analytical FE/L/NS FPK [48,49] FE/NL/NS
(dB) | 4 modes 7 modes 4 modes Err.% 1 mode 4 modes
90 | 02750 02759 02760  0.0362 0049 0.266
100 | 0.8725 0.8725 0.8728  0.0362 0.592 0.578
110 | 2.7590 2.7590 2.7600  0.0362 1.187 1.432
120 | 8.7248 8.7250 8.7281  0.0362 2.200 2.572

FE: Finite Element; L: Linear; NL: Non-Linear; NS: Numerical Simulation

Table 2. Frequencies (Hz) of a Simply-Supported 15x12x0.040 in. Isotropic Plate

Mode (1,1) G.1) (1,3) (33 (5:1) (5:3) 1,5)
Exact 44.078 181.68 259.09 39670 45690 67191  689.12
FE ~ 44082 181.70 259.10 396.75 457.02 672.06

689.29

Mesh size is 10x10 in a quarter plate.

3.3 Simply Supported Isotropic Plate

A simply supported isotropic plate ‘with  immovable in-plane  conditions
u(0,y)=u(a,y)=v(x,0)=v(x,b)=0 is studied in detail. The plate is of 14 by 10 by 0.04 in.
(35.6 by 25.4 by 0.1 cm) and is modeled with a 14 by10 mesh (140 BFS elements) in a
quarter plate. The number of structural node DOF {W} is 560 for the system equations
given in Equation (21). The material properties are E=10.5E7 psi (73 GPa), v=0.3, and
p=2.588x10"* Ibf-sec/in.* (2763 kg/m’). A proportional damping ratio of &m=Eses with

£1=0.02 is used. The lowest seven natural frequencies are given in Table 3.




Table 3. Frequencies (Hz) of a Simply-Supported 14x10x0.040 in. Isotropic Plate

Mode 1,1) G3:1) (1,3) G3:3) ;1) 5:3) (1,3)
Exact  58.116 215.19 36598 523.05 52933 837.19  981.70
FE 58.116  215.19 36598  523.06 529.36  837.22  981.94

The number of modal coordinates to be included in the analyses for converged deflection
and strain is studied first. The Root Mean Square (RMS) maximum non-dimensional
deflection and the RMS maximum strain versus number of modes at SPL of 120 dB using
1, 2, 4, 6, and 7 modes are shown in Figure 4. The maximum strain is €y at the plate
center. The results show that four modes will give converged deflection and strain
responses.

Two other studies for accurate and converged response predictions were also
performed. They are the finite element mesh sizes and the integration time steps. For a
four-mode solution, it was found that a quarter plate model of 14 by 10 mesh size is more
than adequate. The time step of integration At=1/8192=1.2207x10"* sec was first
selected, then the time step was cut into one-half with At=1/(2x8192) sec. The time
histories for the two integration time steps were found to be exactly identical.

Four modes are thus used in the results for the isotropic plate shown in the following:
The time histories, PDF and PSD of maximum deflection and strain at SPL =90 and 120
dB and AT=0.0 are shown in Figures 5 and 6, and at SPL=90, 100 and 120 dB and
AT./AT=2.0 are shown in Figures 7 to 9, respectively. Table 4 gives the statistical
moments of the maximum deflection and maximum strain responses. The skewness and

kurtosis coefficients are defined as

Skewness = ;13/03 (43)
Kurtosis = (pta/c)-3 (44)

where pi and c are the k™ central moment and standard deviation, respectively.
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Table 4. Moments of the Wya/h and €, for the 14x10x0.04 in. Isotropic Plate

SPL AT /AT Rms Mean Variance Skewness Kurtosis
dB in./in. in’/in>.  in’/in’.  in*Jin%.
Whax/h
90 0.0 0.1608 1.241x10*  0.0258 0.0242 -0.4320
120 0.0 1.4039 -2.628x10°  1.9714 0.00634 -0.8613
90 2.0 0.8239 -0.8163 0.0124 2.0074 9.4296
100 2.0 0.7470 -0.1052 0.5470 -0.2480 -1.3823
120 2.0 1.5770 1.999x10° 24873 0.00272 -0.7367
Strain
pin/in.  pin’/in®  in’Jin’, in* /in*.
90 0.0 1.324x10°  -0.0176  0.000175  -0.0432 -0.4050
120 0.0 1.167x10™* 22.268 0.01312 0.5744 0.4317
90 2.0 4.035x10°  -39.094  0.000333  0.22477 0.1467
100 2.0 6.612x107 21.692 0.003902  0.26784 -1.2727
120 2.0 19.02x10° 72.950 0.031171  -0.5501 -0.1875

At the low 90 dB SPL, the plate behaviors basically small deflection (Wax/h=0.1608)
random vibration dominated by the fundamental (1,1) mode as shown in the PSD plots of
Figure 5. The probabilities for deflection and strain are both closely to Gaussian. The
time history at the high 120 dB SPL in Figure 6 is clearly a large deflection (Wmax/h>1.0)
nonlinear random. This is demonstrated by the peaks in PSD plots that they are
broadening and shifting to the higher frequency, and by the presence of a non-zero mean
in-plane strain shown in the strain plots. The large deviation from the Gaussian is shown
by the strain PDF and the larger kurtosis value for deflection and skewness value for
strain in Table 4.

At combined acoustic and thermal loads, the panel responses show the three distinct
motions of the following (i) small deflection random vibration about one of the two

thermally buckled equilibrium positions in Figure 7, (ii) snap-through or oil-canning
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phenomenon between the two thermally buckled positions in Figure 8, and (iii) large
amplitude nonlinear random vibration covering both thermally buckled positions shown
in Figure 9.

At low 90 dB and AT/AT.=2.0, the time histories in Figure 7 clearly show the linear
random responses about one of the thermally buckled positions of (Wmax/h)a1= -0.8163.
The deflection PSD plot shows the domination of the fundamental mode, and the strain
PSD plot shows the equally contribution from the third mode. Also, note that the general
increase of the panel vibration frequencies, e.g., from 58 Hz (Figure 5 at AT=0) to 86 Hz
(Figure 7 at AT/AT =2.0) for the fundamental mode. As the SPL increased to 100 dB,
the time histories in Figure 8 show that snap-through motions and the deflection PDF is
non-Gaussian. This confirms clearly the drawback in using EL approach with the
Gaussian response assumption. At high SPL of 120 dB in Figure 9, the large deflection
RMS Wpa/h is 1.5770 which covers both buckled positions of (Wmax/h)ar=+0.8163.
Nonlinearities are further observed by the broadening and shifting of the peaks in the
PSD plots.

3.4 Clamped Composite Plate

Nonlinear response of a composite plate subjected to combined acoustic and thermal
loads can be determined using the present modal formulation. Three types of panel
behavior are as follows: (i) small deflection random vibration about one of the two
thermally buckled equilibrium positions, (ii) snap-through or oil canning phenomenon
between the two buckled positions, and (iii) large nonlinear random vibration covering
both thermally buckled positions, can be predicted. As shown in the second example, a
clamped rectangular Graphite-Epoxy plate of eight layers [0/45/-45/90]; is investigated.
The plate is of 15 by 12 by 0.048 in. (38.1 by 30.5 by 0.12 cm) and the material
properties are the following: E;=22.5 Msi (155 GPa), E;=1.17 (8.07), G12=0.66 (4.55),

=0.1468x107 Ib-sec¥in.* (1550 kg/m’), v12=0.22, &;=-0.04x10%/°F (-0.07x10/°C), and
0,=16.7x10°° (30.1x10'6). A proportional damping ratio with £;=0.01 is used. The in-

plane edges are immovable and the plate is modeled with a 6 by 6 mesh quarter plate.
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The number of system equations in structure node DOF {Wy} is 121. The system
equations are reduced to the modal coordinates using the lowest four symmetric modes.

The maximum deflection and the maximum strain response time histories, PDF and PSD
at AT/AT.=2.0 and SPL=90, 100, and 120 dB, are shown in Figures 10 to 12,
respectively. The time histories, PDF and PSD plots clearly show the three distinctive
motions of linear vibration about one of the buckled positions at low 90 dB SPL, oil-
canning jump behavior at moderate 100 dB, and large deflection nonlinear random
vibration at high SPL of 120 dB. It is also interesting to note that the maximum thermal
deflection (Wmax/h)ar Of the plate at AT/AT.=2.0 can be also obtained from the deflection
time histories in Figures 10 and 11. The maximum thermal deflection from the time
history plots is Wa/h=11.1446 at AT/AT.=2.0, and the thermal postbuckling analyses
are AT, =36.52 °F and (Wax/h)= £1.134 from reference [50]. The deflection PDF plots
shown in Figures 10 to 12 demonstrate the large deviation from Gaussian distribution.
The statistical moments for the maximum deflection and maximum strain response are
presented in Table 5. The nonlinearities of the response are indicated also by the PSD in

Figures 11 and 12 and the large values of kurtosis.

Table 5. Moments of the Wp,,/h and &, for the
Clamped [0/45/-45/90]s Plate at AT/AT=2.0

SPL Rms mean variance skewness kurtosis
dB in./in. in’/in®>.  in’/in’.  in‘/in®.
Wma/h
90 1.1487 -1.1446 0.0103 2.4667 18.387
100 1.0683 0.4701 0.9388 -0.8812 -0.8872
120 1.3312 0.0064 1.7777 -0.0125 -1.1648
Strain
pin/in.  pin®/in%.  in’/in’.  in‘/in’,
90 6.107x10°  5.0390 0.003705 -0.12307  -0.28389
100 1.289x10* 12894 0.148640 -0.02496  -0.26830
120 3.699x10*  369.88 1.048371  -0.31806  -0.10084
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4. Conclusion

A finite element time domain modal formulation is presented for the prediction of
nonlinear random response of composite panels subjected to acoustic pressure at elevated
temperature. The modal formulation is computationally efficient that the following
occur: (i) the number of modal equations is small, (ii) the nonlinear modal stiffness
matrices are constant matrices, and (iii) the time step of integration could be reasonably
large. It is demonstrated that the following three types of panel motions can be predicted:
(i) linear random vibration about one of the buckled equilibrium position, (ii) snap-
through motions between the two buckled positions, and (iii) nonlinear random response
over both buckled positions. Results of deflection PDF at the high SPL also show that
the assumption of Gaussian distribution by the equivalent linearization technique is

inappropriate.
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Appendix A

Element Matrices and Load Vectors

A1l. Linear Stiffness Matrices
k1= [ [2,] [D)[B, s

Ik, 1=l T = [ 5, T [B][B, s
Ik, 1 (2,1 [4][B, las
e 1= (BT I 1B, Tt

A2. First-Order and Second-Order Stiffness Matrices
|
[kle ] == j’ [BH ]T [Nm ][B0 ]dA

=[k,, J = j 1iB,]a4

1

L1 (BT 6T (8105, [2,T v, )13, + [B,T [81l6]3, D

[klNB] = 5

2b =5 I [B ‘9]T [9][3 ]dA

.A3. Load Vectors

{pbAT } = L [Bb ]T {MAT }dA
{pATm } = L [Bm ]T {NAT }dA
{p @)= [ {H,}p(aa

A4. Mass Matrices
[mb] = ph L{HW}LHW_I dA

= [ (e LA, J+ 1, L, )
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Appendix B

Fortran Code for Gaussian-Stationary Random Load Generation.

Ok oo o ook ook ks sk sk ok sk R KK R ok ok

C

C SIMLOAD

C

O o kR S ko
C N --NO. OF INTERVALS IN THE SPECTRUM

C N SHOULD BE AN INTEGER POWER OF TWO

C NPT --NO.OF POINTS FOR THE TIME SERIES

C NPT SHOULD BE INTEGER POWER OF TWO. NPT>N
C ISEED --RANDOM NUMBER SEED

C TTOTAL =N/FMAX TTOTAL IS THE TOTAL INTEGRATION TIME
C DT=N/NPT*FMAX) DT IS THE INTEGRATION TIME STEP SIZE

C

C**********************************************************************

C INSTRUCTIONS FOR SETTING THE DATA
C
C 1- TAKE HIGHEST FREQUENCY, FMAX

C 2- MINIMUM TIME STEP IS STEP_MIN=1/(2.5xFMAX)

C3-N=FMAX x2

C 4- PICK UP TOTAL RUNNING TIME (1 SEC, 2 SEC ...) T_total=N/FMAX
C 5- SELECT NPT TO SATISFY 2-

C N

C STEP=

C NPT x FMAX
C

Qs sk s kb b s ok sk ok ok b b ok K K R ok ok ok ok ok ol ook kR K R ok ok ok ok ok o

PROGRAM SIMLOAD
IMPLICIT REAL*8 (A-H,0-Z)
C COMMON /XFER/ISTEP,DSTEP,DT,Y(16384)
C COMMON /XFER/DT,Y(16384)
C REAL*8DT,Y(2)
DIMENSION X(16384),Y(16384),SP(2048),W(2048),RAND(16384)
COMPLEX X,ZIMAG
OPEN (1,file='d:\research\load_st\pressure.dat’)
OPEN (2,file='d:\research\load_st\npt.dat")
OPEN (3,file='d:\research\load_st\fmax.dat')
OPEN (4, file='d:\research\load_st\n.dat')
DATA FMAX/1024./
DATA N,NPT /2048,16384/

C**********************************************************************
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C INITIALIZE VARIABLES
C**********************************************************************
C SPL=120 v
C  SPP = 8.41438%10%*(-18.+SPL/10.)
PI = 3.1415926
PI2 = PI*2.0
NP1 = N+1
ZIMAG = CMPLX(0.0,1.0)
SPPW = SPP/PI2
WU = FMAX*PI2
DW = WU/FLOAT(N)
DO 119 I=1,NP1
SP(I) = SPPW
W(I) = (I-1)*DW
119 CONTINUE
AREA = SPP*FMAX
SQ2DW = DSQRT(2.0*DW)
TTOTAL=PI2/DW
DT=TTOTAL/FLOAT(NPT)

sk ks st stk ok sk ok sk ok ook ook ok sk ok ook sk ok oksok ok ok sk ok sk kK sk kR ok ok R R ook o

C SET X(1)=0. IN ORDER TO OBTAIN NEW MEAN ZERO TIME SERIES
C**********************************************************************
X(1)=CMPLX(0.0,0.0)
DO 50 I=N+1,NPT
X(I)=CMPLX(0.0,0.0)
50 CONTINUE
C**********************************************************************
C  GENERATE RANDOM PHASE ANGLES UNIFORMLY DISTRIBUTED
BETWEEN ZERO AND 2.*PI
C**********************************************************************
ISEED=12357 ‘
DO 511=1N
51 RAND®I)=RAN(ISEED)
DO 60 I=2,N+1
PHI=RAND(I-1)*PI2
P1=SQ2DW*DSQRT(SP(I))
X(1)=P1*CDEXP(-ZIMAG*PHI)
60 CONTINUE

s dskardok ook sk ok sk ok koo kR sk sk ok skt kot sk sk o st ot s sk ok okl sk ok ok

C PERFORM FORWARD TRANSFORM

O sk sk ok ootk ook ook ok ok ook ook o ook ok ok sk ks st otk sk ok ok ek ke ks ok o

CALL FFT(X,NPT,1)

Ok ok ok ok o kR sk sk sk bR Rt o Rt s e ok ok ke o ok

C GET REAL PART

kAot okakok koo ok koo sk sk s ok s ok ok ko skl ok ok ok ok o

DO 70 I=1,NPT
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Y(I)=REAL(X(I))

70 CONTINUE
WRITE(1,FMT=100) Y

100 FORMAT (f18.8)
WRITE (2,*) NPT
WRITE (3,*) FMAX
WRITE (4,*) N,DT,SPP
STOP
END

ot s koo o R R SRR R R R R R K R R KR

C
C FFT
C
C**********************************************************************
SUBROUTINE FFT(X,N,K)
IMPLICIT INTEGER(A-Z)
REAL*4 GAIN,PI2,ANG,RE,IM
COMPLEX X(N),XTEMP,T,U(16),V,W
LOGICAL NEW
DATA PI2,GAIN,NO,K0/6.283185307,1.0,0,0/

NEW=NO.NE.N
IF(NOT.NEW)GOTO 2
L2N=0
NO-=1
1 L2N=L2N+1
NO=NO+NO
IF(NO.LT.N)GOTO 1
GAIN=1.0/N
ANG=PI2*GAIN
RE=COS(ANG)
IM=SIN(ANG)
2 IF(NOT.NEW.AND.K*KO.GE.1)GOTO 4
U(1)=CMPLX(RE,-SIGN(IM,FLOAT(K)))

DO 31=2,L2N
3 Ud)=Ud-1)*ud-1)

KO=K
4 SBY2=N

DO 7 STAGE=1,L2N
V=U(STAGE)
W=(1.0,0.0)
S=SBY2
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SBY2=S/2
DO 6 L=1,SBY2
DO 5 I=1,N,S
P=I+L-1
Q=P+SBY2
T=X(P)}+X(Q)
X(QFEX(P)-X(Q)*W
5  X@P)=T
6  W=WH+V
7 CONTINUE

DO 9 I=1,N
INDEX=I-1
INDEX=0
DO 8 J=1,L2N
INDEX=JNDEX+INDEX
ITEMP=INDEX/2
IFATEMP+ITEMP.NE.INDEX)JNDEX=JNDEX+1
INDEX=ITEMP
8 CONTINUE
J=INDEX+1
IF(J.LT.I)GOTO 9
XTEMP=X(J)
X(=X(I)
X(I)=XTEMP
9 CONTINUE

IF(K.GT.0)RETURN

DO 10 I=1,N
10 X@D=X(D*GAIN

RETURN
END
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Appendix C

Linear Random Vibration

From PDE for an isotropic rectangular plate,

o’w
ph pve +DV*w= p,() (C1)

For a simply supported boundary condition, the plate deflection and mode shape are

W, 2,0 = 2. 4 (D8, (%, )

m n

(C2)
fon(5,7) = sin(’”"") x sin(ﬂ]
a b
After substitution of Equation (C2) into Equation (C1) and applying the modal
orthogonality condition, the modal equations are
qmn + wrfmqmn = Ml > m ’n=1=3’5‘ b (C3)
Adding a structural damping,
q}"” + 2§I)lna)l)1" q’ﬂl” + a)jﬂl q'll" = ﬂ_(_t)— (C4)
2 2
w,, =71’ }ﬂ[(ﬂ) + (Z’_) } rad/sec (C5)
phi\a b
2
m,, = 0 (6)
16

where @, and m,,, are the natural frequency and modal mass, respectively.

The response to Equation (C4) is given by Equations (3-57) and (7-37) in reference [51],
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7 xS, (f) ' (C7)

2 3
8mmn émn a)mn

set mn=r and kl=s,

Elg,,]=

(fra)r + é:sa)s )SO (f) - (CS)

mm |02 -0} +40,0,E0, +E0, )0, +E0,)|

E[anqkf] = E[qus] =

The root mean square of maximum deflection from Equation (C2) is

A
RMS(w__ )= {E[(qu }} (C9)

= {Elg?)+ Elg2 )+ ... +2Elg,q,]+ - V-
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